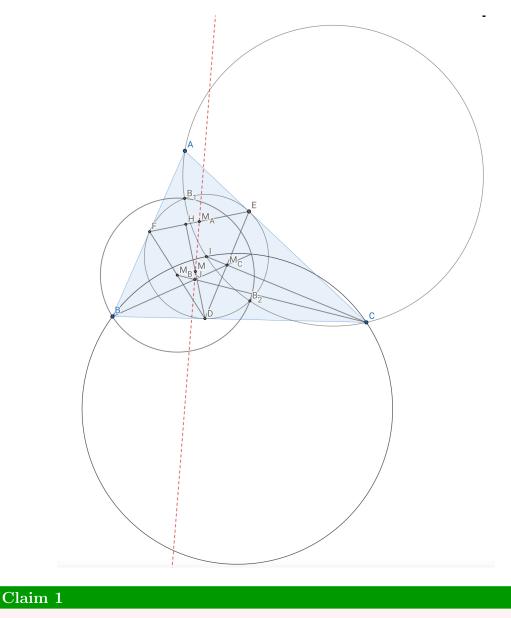
Let ABC be a triangle with incenter I, and whose incircle is tangent to BC, CA, and AB at D, E, and F, respectively. Let K be the foot of the altitude from D to EF. Suppose that the circumcircle of $\triangle AIB$ meets the incircle at two distinct points C_1, C_2 , while the circumcircle of $\triangle AIC$ meets the incircle at two distinct points B_1, B_2 . Prove that the radical axis of the circumcircle of $\triangle BB_1B_2$ and $\triangle CC_1C_2$ passes through the midpoint M of \overline{DK} .

Solution by Nitiwit To solve this problem, we may find other points on the radical axis of $\triangle BB_1B_2$ and $\triangle CC_1C_2$, and then prove that three specific points are collinear instead. Let M_A, M_B, M_C be the midpoints of $\overline{EF}, \overline{DF}, \overline{DE}$, respectively.



 M_A lies on the radical axis of (BB_1B_2) and (CC_1C_2) .

The radical axis of (AIC), (I), and (AIEF) is the concurrency of AI, EF, and B_1B_2 , which is M_A . Therefore, M_A lies on the radical axis of (I) and (BB_1B_2) . Similarly, M_A lies on the radical axis of (I) and (CC_1C_2) , so M_A lies on the radical axis of (BB_1B_2) and (CC_1C_2) .

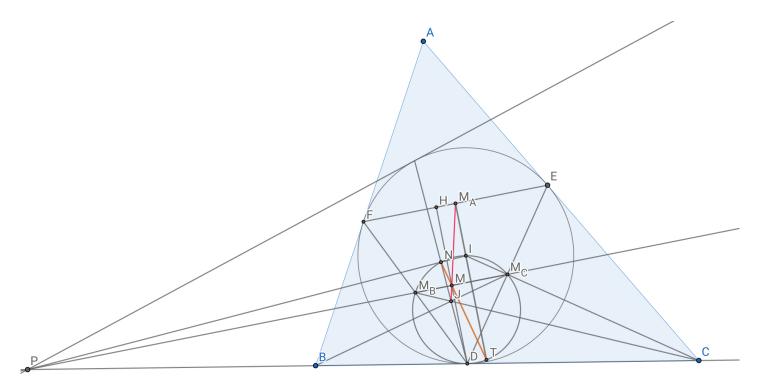
Claim 2

The point of intersection of $M_C B$ and $M_B C$ lies on the radical axis of (BB_1B_2) and (CC_1C_2) .

Proof. By the first claim, we also know that M_C lies on the radical axis of (BB_1B_2) and (BIC). Hence, M_CB is the radical axis of (BB_1B_2) and (BIC). By the radical axis theorem applied to (BIC), (BB_1B_2) , and (CC_1C_2) , we conclude that M_CB intersects M_BC on the radical axis of (BB_1B_2) and (CC_1C_2) .

Suppose $M_C B \cap M_B C = J$.

Now, we need to show that M_A , M, and J are collinear.



Since $\frac{M_BM}{M_CM} = \frac{FH}{HE} = \frac{BD}{DC}$ and M_B, M_C, B, C are concyclic, we have $\angle JMM_B = \angle JDB$. We need to prove that $\angle MM_AH = \angle JDB$.

Let DJ intersect (ID) again at N. Let T be the reflection of M_A across M_BM_C . Since D, P, M, N are concyclic, we get $\angle DPM = \angle DNM$. Suppose that $NM \cap (ID) = T'$. We know that $\angle DT'N = \angle PDN$, so $\angle (T'A, AX) = \angle (AX, M_BM_C)$. In other words, $\overline{DT'} \parallel \overline{M_B M_C} \parallel \overline{DT}$, which means T = T'.