Functional Equation

NITIWIT SIRIMALAISUWAN

January 26, 2025

Tools 1

1.1**Basic Tools**

• Substitutions & Additional Variables \rightarrow Symmetrization Sometimes, we have functional equations such that one side of them is symmetric in x, y, or we can obtain such a condition by an appropriate substitution. Then, swap x with y to get a new condition, which might prove helpful. • Iterations and Recurrence Relations

1.2Cauchy + Continuous = Linear

Suppose $f: R \to R$ satisfies f(x+y) = f(x) + f(y). Then f(qx) = qf(x) for any $q \in Q$. Moreover, f is linear if any of the following are true:

- f is continuous on any interval.
- f is bounded (either above or below) in any nontrivial interval.

• There exist (a, b) and $\epsilon > 0$ such that $(x - a)^2 + (f(x) - b)^2 > \epsilon$ for every x (i.e., the graph of f omits some disk, however small).

1.3Visualize the Function

- Drawing the function on a coordinate plane.
- Translate to Directed Graph

e.g., $x \to f^1(x) \to f^2(x) \to f^3(x) \to \ldots \to f^N(x) \to \ldots$ and $f(1) \to f(2) \to \ldots \to f(N) \to \ldots$ You may think about:

- Does G contain a cycle?
- Are the number of connected components in the graph finite (or infinite)?

- Is there a finite connected component graph?

2 Problems

1. (USA TST 2023) Let N denote the set of positive integers. Fix a function $f:N\to N$ and for any $m,n\in N$ define

$$\Delta(m,n) = \underbrace{f(f(\ldots,f(m)\ldots))}_{f(n)times} - \underbrace{f(f(\ldots,f(m)\ldots))}_{f(m)times} - \underbrace{f(f(\ldots,f(m)\ldots))}_{f(m)times}.$$

Suppose $\Delta(m,n) \neq 0$ for any distinct $m, n \in N$. Show that Δ is unbounded, meaning that for any constant C there exists $m, n \in N$ with $|\Delta(m,n)| > C$

2.(USA TST 2019)We say that a function $f : Z_{\geq 0} \times Z_{\geq 0} \to Z$ is great if for any nonnegative integers m and n,

$$f(m+1, n+1)f(m, n) - f(m+1, n)f(m, n+1) = 1.$$

If $A = (a_0, a_1, \ldots)$ and $B = (b_0, b_1, \ldots)$ are two sequences of integers, we write $A \sim B$ if there exists a great function f satisfying $f(n, 0) = a_n$ and $f(0, n) = b_n$ for every nonnegative integer n (in particular, $a_0 = b_0$). Prove that if A, B, C, and D are four sequences of integers satisfying $A \sim B, B \sim C$, and $C \sim D$, then $D \sim A$.

3.(USA TST 2018) Find all functions $f: \mathbb{Z}^2 \to [0, 1]$ such that for any integers x and y,

$$f(x,y) = \frac{f(x-1,y) + f(x,y-1)}{2}$$

4.(IMO Shortlist 2007) Let c > 2, and let $a(1), a(2), \ldots$ be a sequence of nonnegative real numbers such that $a(m+n) \leq 2 \cdot a(m) + 2 \cdot a(n)$ for all $m, n \geq 1$, and $a(2^k) \leq \frac{1}{(k+1)^c}$ for all $k \geq 0$. Prove that the sequence a(n) is bounded.

5.(China National Olympiad 2021) Find $f : Z_+ \to Z_+$, such that for any $x, y \in Z_+$,

$$f(f(x) + y) \mid x + f(y).$$

6.(China TST 2021)Find all functions $f: Z^+ \to Z^+$ such that for all positive integers m, n with $m \ge n$,

$$f(m\varphi(n^3)) = f(m) \cdot \varphi(n^3).$$

Here $\varphi(n)$ denotes the number of positive integers coprime to n and not exceeding n.

7.(China TST 2019)Find all functions $f: \mathbb{R}^2 \to \mathbb{R}$, such that

- 1) f(0, x) is non-decreasing ;
- 2) for any $x, y \in R$, f(x, y) = f(y, x);
- 3) for any $x, y, z \in R$, (f(x, y) f(y, z))(f(y, z) f(z, x))(f(z, x) f(x, y)) = 0;
- 4) for any $x, y, a \in R$, f(x + a, y + a) = f(x, y) + a.

8.(China TST 2012) n being a given integer, find all functions $f: \mathbb{Z} \to \mathbb{Z}$, such that for all integers x, y we have f(x + y + f(y)) = f(x) + ny.

9. (China TST 2009) Consider function $f: R \to R$ which satisfies the conditions for any mutually distinct real numbers a, b, c, d satisfying $\frac{a-b}{b-c} + \frac{a-d}{d-c} = 0$, f(a), f(b), f(c), f(d) are mutully different and $\frac{f(a)-f(b)}{f(b)-f(c)} + \frac{f(a)-f(d)}{f(d)-f(c)} = 0$. Prove that function f is linear

10. (Putnam 2022)
Find all continuous functions $f:R^+\to R^+$ such that

$$f(xf(y)) + f(yf(x)) = 1 + f(x+y)$$

for all x, y > 0.